

Part - A

Answer ALL Questions.
(10x2=20)

1. Obtain an expression for the output of an Op-amp based non inverting amplifier.
2. With circuit diagram, explain the working of an Op-amp unity gain buffer.
3. Write a short note on the PSW of $\mu \mathrm{P} 8085$.
4. Write a program for $\mu \mathrm{P} 8085$ to find the factorial of a number in memory.
5. List any four single instructions which will each clear the register ' A ' of $\mu \mathrm{P} 8085$.
6. Discuss the S 0 and S 1 signals of $\mu \mathrm{P} 8085$.
7. Illustrate with a suitable example the stack activity during a return from a subroutine.
8. Explain the role of the alternate registers of Z80.
9. With a suitable example illustrate the OUT instructions of Z80.
10. State the advantage of relative branching available in Z 80 over absolute branching.
Part - B

Answer any FOUR.
11. With neat circuit diagrams, explain the working of Op-amp based differentiator and integrator.
12. Develop a program for $\mu \mathrm{P} 8085$ to multiply two 8 bit numbers available at memory locations 8100 h and 8101 h and to store the 16 bit product at 8200 h and 8201 h.
13. With timing diagram explain the machine cycle for STA 8100 of $\mu \mathrm{P} 8085$.
14. Explain the sequence of events that take place in the event of INTR becoming active.
15. Explain the various data addressing modes available in Z 80 with an example each.
Part - C

Answer any FOUR.
16. With a neat circuit diagram explain how the simultaneous equations, $x+2 y=2$ and $x-y=0.1$ can be solved using Op-amps?
17. Develop a program for $\mu \mathrm{P} 8085$ to solve ${ }^{\mathrm{n} 1} \mathrm{C}_{\mathrm{r} 1}+{ }^{\mathrm{n} 2} \mathrm{C}_{\mathrm{r} 2}$. Use a subroutine for factorial.
18. Develop a program for $\mu \mathrm{P} 8085$ to,
(a) find the square root of an 8 bit number available in memory location 8100 h , and to store the result at 8102 h using memory direct mode of addressing.
(b) find the number of 1 s in an 8 bit number available at 8100 h and to store the result at 8101 h using memory indirect mode of addressing.
19. Develop an interface and program for $\mu \mathrm{P} 8085$ to implement an 8 bits successive approximation A / D converter
20. Develop a program for Z 80 to sort an array of 80 h elements with a starting address of 8100 h in ascending order.

